Conventional and High-flow Oxygen Therapy in COVID-19

Irandi Putra Pratomo, M.D., Ph.D.

Holistic Management of COVID-19 and Other Emerging Diseases

PIPKRA Workshop, 26 February, 2021
Presentation Outline

• Pulmonary Physiology at-A-Glimpse
• Oxygen Impairments in COVID-19
• Oxygen Therapy in COVID-19
• High-flow Oxygen Therapy in COVID-19
• Preparation & Unfavored Events of High-flow Oxygen Therapy
• Conclusion
Pulmonary Physiology at-A-Glimpse

Conventional and High-flow Oxygen Therapy in COVID-19
Irandi Putra Pratomo, M.D., Ph.D., FAPSR

FiO₂ = 21%

PAO₂ = 100 mmHg

PACO₂ = 40 mmHg

PvCO₂ = 46 mmHg

PaO₂ = 100 mmHg

https://doi.org/10.4187/respcare.03377
Alveolar surface tension by AT2 cells

Laplace's Law:
$$\Delta P = 2\gamma/r$$

1. $r_1 < r_2$
2. $\gamma_1 = \gamma_2$
3. $\Delta P_1 > \Delta P_2$
4. $r_1 < r_2$
5. $\gamma_1 > \gamma_2$
6. $\Delta P_1 = \Delta P_2$

Collapse

Lung Surfactant

+ LS

https://doi.org/10.3389/fphys.2020.00386
Gas Diffusion by AT1 Cells

Conventional and High-flow Oxygen Therapy in COVID-19
Irandi Putra Pratomo, M.D., Ph.D., FAPSR
Oxygen Impairments in COVID-19

Conventional and High-flow Oxygen Therapy in COVID-19

Irandi Putra Pratomo, M.D., Ph.D., FAPSR

https://doi.org/10.1161/ATVBAHA.120.314515
Alveolar-arterial oxygen gradient (A-a DO₂)

Ventilation – Perfusion (V/Q) Mismatch ••

PaO₂:FiO₂ decreased/ARDS (<300)

Conventional and High-flow Oxygen Therapy in COVID-19
Irlandi Putra Pratomo, M.D., Ph.D., FAPSR

https://dx.doi.org/10.4103%2F0970-2113.197116
https://doi.org/10.4187/respcare.03377
https://doi.org/10.1161/CIRCULATIONAHA.120.047915
Oxygen Therapy in COVID-19

• Determine an Increased Oxygen Demand in COVID-19 → Clinical signs of hypoxemia:
 • Increased work of breathing
 • Increased respiration rate
 • Decreased peripheral oxygen saturation (SpO₂)
 • Abnormal CXR (i.e. pneumonia, effusion, etc)

• Estimate Oxygen Demand & Treat:
 • Take blood gas analysis (BGA)
 • Calculate A-a DO₂
 • Calculate required FiO₂
 • Oxygen supplementation

https://dx.doi.org/10.4103%2F0970-2113.197116
https://www.ncbi.nlm.nih.gov/books/NBK482316/
A-a DO$_2$

- **In normal young adult**, A-a DO$_2$ < 10 mmHg
- **Increases with age:**
 - Age 20: 4 to 17 mmHg
 - Age 40: 10 to 24 mmHg
 - Age 60: 17 to 31 mmHg
 - Age 80: 25 to 38 mmHg

Table: A-a DO$_2$, Hypoxemic Condition Associated with A-a DO$_2$, Oxygen response

<table>
<thead>
<tr>
<th>A-a DO$_2$</th>
<th>Hypoxemic Condition Associated with A-a DO$_2$</th>
<th>Oxygen response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Hypoventilation Drive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Neuromuscular disorders</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Central nervous system disorder</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low inspired FiO$_2$ (e.g. high altitude, inadequate oxygen)</td>
<td></td>
</tr>
<tr>
<td>Increased</td>
<td>Dead space</td>
<td>Responsive</td>
</tr>
<tr>
<td></td>
<td>• Pulmonary embolism</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Atelectasis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pneumonia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Obstructive lung disease (e.g. Asthma, COPD)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pneumothorax</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Altered diffusion/blood-gas barrier</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Interstitial lung disease, incl pulmonary fibrosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shunt</td>
<td>Unresponsive</td>
</tr>
<tr>
<td></td>
<td>• Congestive heart failure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Lobar/diffuse pneumonia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Adult Respiratory Distress Syndrome (ARDS)</td>
<td></td>
</tr>
</tbody>
</table>

Conventional and High-flow Oxygen Therapy in COVID-19
Irandi Putra Pratomo, M.D., Ph.D., FAPSR

https://dx.doi.org/10.4103%2F0970-2113.197116
https://www.ncbi.nlm.nih.gov/books/NBK482316/
PaO\(_2\):FiO\(_2\)

- Identify **current FiO\(_2\)**
- Obtain **PaO\(_2\)** from BGA
- Calculate **PaO\(_2\):FiO\(_2\)**
 - **target >300**
- Re-adjust FiO\(_2\) → re-adjust device & flow rates
- Keep in mind: **Patient’s Comfort**

<table>
<thead>
<tr>
<th>Device</th>
<th>Flow Rates</th>
<th>Delivered O(_2)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasal cannula</td>
<td>1 L/min</td>
<td>21%-24%</td>
</tr>
<tr>
<td></td>
<td>2 L/min</td>
<td>25%-28%</td>
</tr>
<tr>
<td></td>
<td>3 L/min</td>
<td>29%-32%</td>
</tr>
<tr>
<td></td>
<td>4 L/min</td>
<td>33%-36%</td>
</tr>
<tr>
<td></td>
<td>5 L/min</td>
<td>37%-40%</td>
</tr>
<tr>
<td></td>
<td>6 L/min</td>
<td>41%-44%</td>
</tr>
<tr>
<td>Simple oxygen face mask</td>
<td>6-10 L/min</td>
<td>35%-60%</td>
</tr>
<tr>
<td>Face mask with O(_2) reservoir</td>
<td>6 L/min</td>
<td>60%</td>
</tr>
<tr>
<td></td>
<td>7 L/min</td>
<td>70%</td>
</tr>
<tr>
<td></td>
<td>8 L/min</td>
<td>80%</td>
</tr>
<tr>
<td></td>
<td>9 L/min</td>
<td>90%</td>
</tr>
<tr>
<td></td>
<td>10-15 L/min</td>
<td>95%-100%</td>
</tr>
<tr>
<td>Venturi mask</td>
<td>4-8 L/min</td>
<td>24%-40%</td>
</tr>
<tr>
<td></td>
<td>10-12 L/min</td>
<td>40%-50%</td>
</tr>
</tbody>
</table>

*Percentage is approximate.

Room air, FiO\(_2\) = 21%

https://dx.doi.org/10.4103%2F0970-2113.197116
NIH COVID-19 Treatment Guidelines Panel’s (the Panel’s) recommendations

• Goal of Oxygenation: SpO$_2$ 92 – 96%

• Why should SpO$_2$ >92%?

• In a trial of non-COVID-19 ARDS, target SpO$_2$ 88 – 92%:
 • Increased mortality at 90 days (between-group risk difference 14%; 95% CI, 0.7% to 27%)

• Why should SpO$_2$ <96%?

• In a meta-analysis of 25 RTs, non-COVID-19, median SpO$_2$ 96%:
 • Increased risk of in-hospital mortality vs lower SpO$_2$ (RR 1.21; 95% CI, 1.03–1.43)

High-flow Oxygen Therapy

- Advanced oxygen therapy
- Provide **heated & humidified** oxygen at flow 15-60 L/min
- Terminology:
 - High-flow nasal cannula (HFNC)
 - High-flow oxygen therapy
 - Nasal high-flow
 - Trans-nasal insufflation
 - *Kanal hidung arus cepat* (KHAC)
 - *(By respective existing brand)*

Download full PDF

https://dx.doi.org/10.4103%2F0970-2113.197116
https://www.ncbi.nlm.nih.gov/books/NBK482316/

Conventional and High-flow Oxygen Therapy in COVID-19
Irandi Putra Pratomo, M.D., Ph.D., FAPSR
Conventional and High-flow Oxygen Therapy in COVID-19
Irandi Putra Pratomo, M.D., Ph.D., FAPSR

https://doi.org/10.1164/rccm.201701-0006ED
NIH COVID-19 Treatment Guidelines Panel’s (the Panel’s) recommendations

- Adults w/ COVID-19 & acute respiratory failure after conventional oxygen therapy → high-flow nasal cannula (HFNC) vs NIV (BII)
 - Recommends a closely monitored trial of NIV for whom HFNC is not available (BIII)

- HFNC group had more ventilator-free days (24 days) vs conventional oxygen therapy group (22 days) or NIPPV group (19 days) (P = 0.02)

- 90-day mortality lower in the HFNC group vs conventional oxygen therapy group (HR 2.01; 95% CI, 1.01–3.99) vs NIV (HR 2.50; 95% CI, 1.31–4.78)

- HFNC reduced the rate of intubation (OR 0.48; 95% CI, 0.31–0.73) & ICU mortality (OR 0.36; 95% CI, 0.20–0.63) vs NIV

High-flow Oxygen Therapy Practical Recommendations

| Flow rate | • Start at 30-40 litres min⁻¹ and increase to meet the patient’s demand
 | • Increase the delivered flow until a reduction in respiratory rate and stable SaO₂ is achieved |
|--------------------|---|
| Temperature | Set at 37 °C |
| FiO₂ | • Increase the FiO₂ until satisfactory SaO₂ is achieved
 | • FiO₂ might set 100% in acute respiratory failure |
| Monitoring | Continuous monitoring of heart rate, respiratory rate, SaO₂ |
| Positive response and weaning | • Gas flow rate and FiO₂ adjusted according to the clinical response
 | • Reduce FiO₂ by 5-10% and reassess after 1-2 h.
 | • Reduce the flow rate by 5 litres/min and reassess after 1-2 h.
 | • Consider weaning from HFNC with flow rates 25 litres/min and FiO₂ <0.4. |
| Ineffective response | • If there is no improvement, treatment escalation must be considered
 | • Do not delay intubation |

https://doi.org/10.1016/j.bja.2017.11.010

Conventional and High-flow Oxygen Therapy in COVID-19
Irandi Putra Pratomo, M.D., Ph.D., FAPSR
Conventional and High-flow Oxygen Therapy in COVID-19

Irandi Putra Pratomo, M.D., Ph.D., FAPSR

Initial Assessment
Are any of the following present?
- Unconsciousness
- Cardiac arrest
- Central airway obstruction
- Hemodynamic instability

Moderate-to-severe respiratory distress?
- RR >30/minute
- \(\text{SpO}_2 < 94\% \)
- \(\text{PaO}_2/\text{FiO}_2 < 300 \)

No

Yes

- Nasal Cannula 6 L/min
- Venturi mask \(\text{FiO}_2 50\% \), 2-15 L/min
- Non-rebreather mask 15 L/min

Reassess every 30 min in first one hour, then then hourly for the next few hours

Deteriorating/increasing work of breathing?

No

Yes

HFNC \(\text{FiO}_2 100\% \) or NIV

Reassess every 30 min in two hours

Intubation

Conventional supplemental oxygen therapy
Titrating oxygen up/down with target \(\text{SpO}_2 > 93\% \)
• ROX index: prediction tool to identify need for mechanical ventilation in pneumonia patients with hypoxemic acute respiratory failure treated with HFNC

\[\text{ROX} = \frac{\text{SpO}_2}{\text{FiO}_2} \]

Respiratory Rate

• ROX index ≥4.88 at 2, 6, and 12 hrs → predict HFNC success

Conventional and High-flow Oxygen Therapy in COVID-19
Irandi Putra Pratomo, M.D., Ph.D., FAPSR
HFNC: Flow 45-60 L/min, FiO₂ 100%

- Observe for 2 hrs
 - ROX ≥ 3.85 or SpO₂ ≥ 93%
 - And
 - RR < 25/min
 - Continue HFNC
 - ROX 2.85 – 3.84 or SpO₂ ≥ 93%
 - And
 - RR 25 – 30/min
 - Continue HFNC
 - ROX < 2.85 or SpO₂ < 93%
 - And
 - RR ≥ 30/min
 - Discontinue HFNC

- Observe for 6 hrs
 - ROX > 4.88 or SpO₂ ≥ 93%
 - And
 - RR < 25/min
 - Continue HFNC

- Observe for 12 hrs
 - ROX < 3.85 or SpO₂ < 93%
 - And
 - RR > 30/min
 - Discontinue HFNC

Conventional and High-flow Oxygen Therapy in COVID-19
Irandi Putra Pratomo, M.D., Ph.D., FAPSR

https://doi.org/10.4103/smj.smj_64_20
Preparation & Unfavored Events of High-flow Oxygen Therapy

A. Related to the devise
1. Settings
 - Flow
 - FiO₂
2. PaO₂:FiO₂ interpretation
3. Start of treatment
4. Ventilation slots patency
5. Filter cleaning
6. Disinfection
7. Lack of internal battery

B. Related to oxygenation
1. O₂ tube connection
2. FiO₂ delay
3. Internal alarms menu settings
4. Adjusting flowmeter
5. No smoking

C. Related to humidification
1. Sterile water
2. Plastic bags
3. Cap
4. Avoid water runs out
5. Permeable circuit

D. Related to the tubing
1. Tube electric resistance
2. Tube breaks
3. Tube position
4. Tube weight

E. Related to nasal cannulas
1. Cannula size
2. Appropriate cannulas
3. Cannula placement
4. Adequate nasal hygiene

F. Related to alarms
1. Internal alarm menu setting
2. Alarm identification

G. Related to the patient
1. Nose
2. Paradoxical suffocation
3. Chest pressure
4. Understanding HFNC
5. Mobility
6. Noise
7. Claustrophobia
8. Intolerance
9. Barotrauma

Conventional and High-flow Oxygen Therapy in COVID-19

Irandi Putra Pratomo, M.D., Ph.D., FAPSR

https://doi.org/10.23937/2474-3674/1510048

https://doi.org/10.4187/respcare.04577
Conclusion

- Features of acute respiratory failure in COVID-19: Alveolar dead space, altered blood-gas barrier, shunt
- Signs of increased oxygen demand/hypoxemia: Increased RR, decreased SpO₂, abnormal CXR
- Oxygen therapy “dosage” \rightarrow FiO₂
- Therapeutic target \rightarrow PaO₂:FiO₂ >300
- HFNC in COVID-19
 \rightarrow beneficial at correct timing (vs NIV)
- When giving HFNC \rightarrow consider patient’s comfort & close monitoring + ROX index during first 12 hrs

Conventional and High-flow Oxygen Therapy in COVID-19
Irandi Putra Pratomo, M.D., Ph.D., FAPSR
To be published soon:

Rumah PDPI
Jl. Cipinang Baru Bunder No. 19, Cipinang, Pulogadung, Jakarta Timur 13340
Indonesia
http://www.klikpdpi.com
Irandi Putra Pratomo, M.D., Ph.D., FAPSR

Conventional and High-flow Oxygen Therapy in COVID-19

Thank You for Your Attention

https://spesialis-paru.id/